Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
EE Times-Asia > Power/Alternative Energy
Power/Alternative Energy??

Scientists find ways to prolong Li-ion battery's life

Posted: 30 Jul 2014 ?? ?Print Version ?Bookmark and Share

Keywords:Li-ion? RuO<sub>2</sub>? lithium batteries?

Lithium batteries are the main power source of today's portable electronic devices, which is why researchers all over the world work hard in search of materials that will lead to safe, cheap, long-lasting, and powerful Li-ion batteries.

A group of researchers, working at various U.S. Department of Energy light source facilities and at Cambridge and Stony Brook universities, recently studied a class of Li-ion battery electrodes that have capacities much greater than those of the materials used in batteries today. The researchers wanted to determine why these materials can often store more charge than theory predicts.

The authors chose ruthenium oxide (RuO2) as a model system to study these so-called "conversion materials," named because they undergo large structural changes when reacting with lithium ions, reversibly forming metal nanoparticles and salts (here Ru and Li2O). These reactions are very different from those that occur in conventional electrodes, which store charge by allowing Li ions to nestle into spaces within the crystal lattice.

Three-stage reaction pathway of the ruthenium-oxide-lithium battery system

A summary of the three-stage reaction pathway of the ruthenium-oxide-lithium battery system.

"Our investigation identified the source of the additional capacity found for RuO2, and has also yielded a protocol for studying the 'passivation layer' that forms on battery electrodes, which protects the electrolyte from undergoing further decomposition reactions in subsequent charge-discharge cycles," said the study's corresponding researcher, Clare Grey, a professor in the chemistry departments at Cambridge and Stony Brook universities. "Understanding the structures of these passivation layers is key to making batteries that last long enough for use in applications such as transportation and power-grid storage."

At Brookhaven National Laboratory's National Synchrotron Light Source, the team studied their samples using x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). At the Advanced Photon Source at Argonne National Laboratory, they used two additional techniques, high-resolution x-ray diffraction (XRD) and scattering pair distribution function (PDF) analysis, to extract information on the electronic and long/short-range structural changes of the RuO2 electrode in real time as the battery was discharged and charged. Using these methods, the team showed that RuO2 was reduced to Ru nanoparticles and Li2O via the formation of intermediate phases, LixRuO2.

Since this did not explain the source of the additional charge-storage mechanism, the group used another technique, high-resolution solid-state nuclear magnetic resonance (NMR). This method involves subjecting a sample to a magnetic field and measuring the response of the nuclei within the sample. It can yield specific information on the chemical compositions and local structures, and is particularly useful for studying compounds that contain only "light" elements, such as hydrogen (H), Li, and oxygen (O), which are difficult to detect using XRD. The NMR data showed that the major contributor to the capacity is the formation of LiOH, which reversibly converts to Li2O and LiH. Minor contributors to the capacity come from Li storage on the Ru nanoparticle surfaces, forming a LixRu alloy, and the decomposition of the electrolyte. The latter, however, ultimately causes the capacity to diminish and will result in the death of the battery following multiple charge cycles.

Scientists from the University of Cambridge, Brookhaven National Laboratory, Argonne National Laboratory, and Stony Brook University conducted this research.

- Laura Mgrdichian
??Brookhaven National Laboratory

Article Comments - Scientists find ways to prolong Li-i...
*? You can enter [0] more charecters.
*Verify code:


Visit Asia Webinars to learn about the latest in technology and get practical design tips.

Back to Top