INTRODUCTION

SPICE macro-models provide an accurate simulation of a TVS avalanche diode’s current versus voltage characteristics. These models can be used to analyze and optimize the performance of surge protection circuits. TVS macro-models are created by combining standard SPICE devices into a sub-circuit.

Data Sheet Specifications

The first item required to analyze the TVS macro-models is to review the device specifications listed on the data sheet. Figure 1 provides the current and voltage definitions of a unidirectional avalanche TVS diode.

Figure 1. Definition of the Current and Voltage Data Sheet Specifications

- I_F: Forward current
- V_F: Forward voltage @ I_F
- I_R: Reverse leakage current
- V_{RWM}: Reverse working voltage
 - @ I_R (V_{RWM} (typ.) = 0.8 x V_{BR})
- I_T: Test current
- V_{BR}: Breakdown voltage @ I_T
- I_{PP}: Maximum reverse peak pulse current
 - (typically specified with either the 8 x 20 μs or 10 x 1000 μs surge pulse)
- V_C: Clamping voltage @ I_{PP}
Other important data sheet specifications include the capacitance and peak power rating. The capacitance of the diode is typically specified at a bias voltage of 0 Vdc, with an AC signal of 50 mV at 1.0 MHz. The power rating is typically defined for a small package with the $8 \times 20 \mu s$ (rise time \times pulse duration), while the $10 \times 1000 \mu s$ surge pulse is often used for defining devices in large packages. The peak energy in Watts is measured by multiplying the surge current (I_{pp}) and clamping voltage (V_C) waveforms together.

Macro-Model Subcircuit

The TVS diode’s macro-models are created by combining standard SPICE devices into a sub-circuit. Figure 2 shows a schematic of the macro-model. Appendix I provides the PSPICE netlist’s of the 1SMB28A and NUP2105 macro-models. The TVS macro-model is based on the Zener diode model documented in references [3] and [4]. References [1] and [2] provide alternative TVS diode SPICE models.

![Figure 2. TVS Avalanche Diode SPICE Macro-Model](image)

Forward Region

Diode D_1 is the key component when voltage V_D is greater than zero. The TVS diode’s forward bias characteristics are controlled by D_1’s saturation current (I_S), emission coefficient (N) and series resistance (R_S) variables. The current equations for the forward bias region are listed below.

\[
I_D = I_F + I_L + I_R = I_{F_D1} + \frac{V_D}{R_L} + I_{S_D2}
\]

\[
I_L \ll I_R < I_F
\]

\[
\therefore I_D = I_{F_D1} = I_{S_D1} \left(e^{\left(\frac{V_D}{nVT}\right)} - 1 \right) = I_{S_D1} \left(e^{\left(\frac{V_D}{kT}\right)} \right)
\]

where $V_T = \frac{kT}{q} = 26 \text{ mV @ 25°C}$

- K = Boltzmann’s constant
- $= 1.38 \times 10^{-23}$ joules/K
- q = Electronic charge
- $= 1.6 \times 10^{-19}$ coulombs
- T = Absolute temperature (Kelvin)
Leakage Region

The leakage or reverse bias region is defined when voltage \(V_D \) is between 0 V and the breakdown voltage \(V_{BR} \). Currents \(I_F \) and \(I_R \) are small in comparison to \(I_L \) because diodes \(D_1 \) and \(D_2 \) are reverse biased; thus, the leakage current can be approximated by \(V_D / R_L \).

\[
I_D = I_F + I_L + I_R \\
= I_S_D_1 + \frac{V_D}{R_L} - I_S_D_2 \\
\text{IF \& IR \ll IL} \\
\therefore I_D \approx \frac{V_D}{R_L}
\]

Breakdown Region

The breakdown region is modeled by \(E_V1, D_2 \) and \(R_Z \). Current flows through this path when the voltage exceeds \(E_V1 \) plus the forward voltage of \(D_2 \). Breakdown voltage \(V_{BR} \) is specified at test current \(I_T \) and is equal to the product of \(I_BV \) and \(R_{BV} \). \(D_3 \) is used to compensating for the voltage drop of \(D_2 \). The clamping voltage \(V_C \), specified at current \(I_{PP} \), is equal to the sum of the voltages of \(E_V1, R_Z \) and \(D_2 \) as shown below.

\[
I_D = I_S \left[e^{\frac{V_D}{\eta VT}} \right] \therefore V_D = \eta VT \left[\ln \left(\frac{I_D}{I_S} \right) \right] \\
V_C @ I_{PP} = V_EV1 + V_D2 + V_RZ \\
= [V_BR - \eta VT \ln \left(\frac{I_T}{I_S} \right)] \eta 2VT \ln \left(\frac{I_{PP}}{I_S} \right) + (I_{PP} R_Z) \\
VE_EV1 = V_BR = V_D \@ I_T = I_BV R_{BV}
\]

Impedance Characteristics

The TVS diode impedance consists of an inductive, capacitive and resistive term. Modeling the inductance ensures that the magnitude of the overshoot pulse due to the inductance \(V = L \frac{\Delta I}{\Delta t} \) of the IC package is simulated. Matching the capacitance helps to predict the shape of the clamped waveform. Including an accurate resistance term is important to predict the power capability of the device.

AC Model

The impedance of a TVS diode can be measured using a network analyzer. The real and imaginary portions of the measured impedance are then used to provide an equivalent small signal or AC model. The AC model consists of a resistor \(R_S \), inductor \(L_S \) and capacitor \(C_S \) connected in series. \(R_S \) is equal to the real portion of the complex impedance and is measured at the resonant frequency \(f_R \). At \(f_R \), the impedance is purely resistive because the impedance of \(L_S \) and \(C_S \) are equal in magnitude but opposite in polarity. \(C_S \) is typically obtained by measuring the capacitance at 1.0 MHz. \(L_S \) is obtained from the resonant frequency, which corresponds to the minimum impedance. Table 1 shows how the AC model impedance terms are integrated into the SPICE macro-model. The design equations for the AC model are listed below.

\[
Z_R = R \\
Z_C = \frac{-j}{\omega C} \\
Z_L = \omega L \\
\omega = 2\pi f \\
Z = R_{\text{eqv.}} + jX_{\text{eqv.}} \\
Z = \sqrt{R_{\text{eqv.}}^2 + X_{\text{eqv.}}^2} \\
= \sqrt{R_S^2 + \left(\frac{2\pi f L_S - \frac{1}{2\pi f C_S}}{2\pi f C_S} \right)^2} \\
\therefore |Z_L| = |Z_C| \\
R_S @ f_R \quad Z = Z_{\text{Min.}} = R_S \\
C_S @ 1 \text{ MHz} \quad Z_{CS} >> Z_{LS} \quad \therefore C_S \approx \frac{1}{2\pi f Z} \\
L_S @ f_R = \frac{1}{2\pi f L_S C_S} \quad \therefore L_S = \frac{1}{4\pi^2 f^2 C_S}
\]

Table 1. Correlation of the AC and Macro-Model Components

<table>
<thead>
<tr>
<th>AC Model Component</th>
<th>Equivalent Macro-Model Component</th>
<th>Comments</th>
</tr>
</thead>
</table>
| \(R_S \) | \(R_Z + D_2_RS \) | • Typically \(D_2_RS = 0 \); thus, \(R_S = R_Z \) \\
| \(R_Z \approx \) clamping voltage \(V_C \) \\
| \(R_Z \approx 1/power rating \) |
| \(L_S \) | \(L \) | • \(L \) produces a short overshoot pulse due to \(V = L \frac{\Delta I}{\Delta t} \) |
| \(C_S \) | \(D_1_CJ0 \) | • \(D_1_CJ0 \) is specified at 0 V and decreases as the reverse bias voltage increases |
Measured Test versus AC Model Impedance Data

Figures 3 and 4 show the impedance of the 1SMB28A and NUP2105. A TVS diode’s impedance is a function of the bias voltage, as shown in Figure 3. Also, the capacitance decreases if the DC bias voltage increases, which produces a higher resonant frequency (f_R). A TVS diode can be modeled as a capacitor at relatively low frequencies; however, the inductance of the IC package must be included as the frequency approaches the resonant frequency. Table 2 provides a summary of the measured impedance and the AC model parameters for the 1SMB28A and NUP2105.

![Figure 3. Impedance Characteristic of the 1SMB28A Unidirectional TVS Diode](image)

![Figure 4. Impedance Characteristic of the NUP2105 Bidirectional TVS Diode](image)

Resistance

The real or resistive portion of the impedance is modeled by R_S in the AC model and R_Z in the SPICE model. Resistance is a key factor in determining the power rating of the device and is a function of the method used to attach the IC package leads to the silicon die. The relatively large pad size of a SMB lead produces a large contact area at the lead-to-silicon connection that reduces the resistance. In addition, the large lead size of the SMB lowers the thermal resistance and increases the amount of thermal energy that can be dissipated through the leads onto the mounting pads of the PCB. In comparison, a SOT–23’s lead-to-silicon connection has a relatively high resistance compared to a SMB device.
The high energy of a surge pulse can increase the TVS diode’s junction temperature to a value that can be an order of magnitude larger than the ambient temperature. TVS diodes are designed to withstand high junction temperatures; however, the breakdown voltage (V_{BR}) and resistance are increased to a value higher than their nominal values. One option to simulate a high die temperature is to increase the macro-model’s R_Z value so that the simulated clamping voltage matches the bench test value at a specific pulse, such as either the $8 \times 20 \mu s$ or $10 \times 1000 \mu s$ surge tests. Increasing R_Z raises the simulated minimum impedance ($Z_{Min.}$) as shown in Figure 5, but does not change the resonant frequency.

![Figure 5. The increase in the 1SMA28A's junction temperature produced by a high energy surge pulse can be modeled by increasing the magnitude of R_Z from the nominal value of 0.1 to 0.65 Ω.](http://onsemi.com)

Capacitance and Inductance

The capacitance (C_S) and inductance (L_S) form the imaginary or reactance portion of the TVS diode’s impedance. The capacitance is proportional to the size of the silicon junction area. The SMB device houses a larger die than a SOT−23; thus, a SMB device will typically have a lower resonant frequency than a SOT−23 device. In addition, a bidirectional diode has a capacitance that is equal to half of the capacitance of an equivalent unidirectional device. Bidirectional diodes are created from two series connected unidirectional diodes; thus, the capacitance is lower than a unidirectional device. The inductance term is produced by the bonding connection between the package lead and the silicon die. The magnitude of L_S is similar for the 1SMB28A and NUP2105 TVS diodes.

Table 2. The small R_S and large C_S terms of the 1SMB28A account for the device's high power rating. The small capacitance of the NUP2105 results in a high resonant frequency.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package and Schematic</th>
<th>Power Rating</th>
<th>f_R (MHz)</th>
<th>Bias Voltage</th>
<th>AC Model R_S (Ω)</th>
<th>L_S (nH)</th>
<th>C_S (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1SMB28A</td>
<td>SMB</td>
<td>600 W</td>
<td>146</td>
<td>0 Vdc</td>
<td>0.12</td>
<td>2.44</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10 × 1000 μs)</td>
<td>276</td>
<td>28 Vdc</td>
<td>0.14</td>
<td>2.44</td>
<td>137</td>
</tr>
<tr>
<td>NUP2105</td>
<td>SOT−23</td>
<td>350 W</td>
<td>616</td>
<td>0 Vdc</td>
<td>1.28</td>
<td>2.48</td>
<td>26.4</td>
</tr>
</tbody>
</table>
Simulation Test Results
The clamping performance of the 1SMB28A TVS diode for the $10 \times 1000 \, \mu s$ surge test is shown in Figure 6. The SPICE simulation used a R_Z value of 0.65 Ω instead of the 0.1 Ω resistance measured with the network analyzer. The larger resistance results in an accurate clamping voltage (V_C) for high energy surges, but will simulate a V_C that is larger than a bench measurement for relatively low energy pulses. Future enhancements of the macro−model will include the integration of a thermal model to simulate the increase in the TVS device’s junction temperature due to self heating.

Figure 6. SPICE predicts a maximum clamping voltage of 42.5 V if R_Z is equal to 0.65 Ω. The bench test value is 42.4 V.

Figure 7 shows the clamping performance of the NUP2105 TVS diode for the $8 \times 20 \, \mu s$ surge test. The macro−model used a R_Z value of 1.28 Ω that was determined from the AC model. The simulated V_C is relatively close to the measured value because of the shorter duration of the $8 \times 20 \, \mu s$ surge in comparison with the $10 \times 1000 \, \mu s$ pulse.

SPICE Limitations
Macro−models provide an accurate SPICE representation of the TVS avalanche diode’s current and voltage characteristics for most applications. SPICE serves as a powerful design tool to analyze surge suppression circuits; however, simulation should not be used as a replacement for hardware development tests. A summary of the limitations of the macro−models is shown in Table 3.
Table 3. Simulation Limits of TVS Diode Macro–Models

<table>
<thead>
<tr>
<th>Region</th>
<th>Key Design Parameter</th>
<th>Limitation</th>
</tr>
</thead>
</table>
| Forward | Forward Voltage (V_F) | • V_F is typically specified as a maximum value at a single current point in the data sheet
• The accuracy is enhanced if two typical test points are used |
| Leakage | Leakage Current (I_L) | • I_L is modeled as a linear function of the bias voltage
• Measured I_L data varies as an exponential function of the bias voltage |
| Breakdown| Clamping Voltage (V_C) | • ΔV_C due to self heating is not modeled
• Overcurrent failures are not modeled |

References

Appendix I: Macro–Model SPICE Netlists

1SMB28A Macro–Model
**
* 1SMB28A PSPICE macro–model
* Uni-directional TVS avalanche diode, SMB package, \(V_{BR} = 32.75 \) V
**
* Anode Cathode
.SUBCKT SMB28A 7 1
**
* Forward Region
* D1’s CJO term models the capacitance
D1 2 1 MDD1
.MODEL MDD1 D IS=1.83708e−14 N=1 XTI=1 RS=0.2 + CJO=486e−12 TT=5e−10
**
* Leakage Region
* RL models leakage current (I_L)
* MDR temp. coeff. model \(\Delta I_L / \Delta T \)
RL 1 2 MDR 5.64e+06
.MODEL MDR RES TC1=0 TC2=0
**
* Reverse Breakdown Region
* RZ models the \(\Delta I / \Delta V \) slope
* The small signal impedance is equal to 0.1 \(\Omega \)
* A RZ value of 0.65 \(\Omega \) matches the clamping voltage at max. current
* Increasing RZ models the self-heating from the energy of a surge event
RZ 2 3 0.65
D2 4 3 MDD2
.MODEL MDD2 D IS=2.5e−15 N=0.5
* Breakdown Voltage (\(V_{BR} \)) = IBV x RBV
EV1 1 4 6 8 1
IBV 0 6 0.001
RBV 6 0 MDRBV 32750
* MDRBV temp. coeff. model \(\Delta V_{BR} / \Delta T \)
.MODEL MDRBV RES TC1=0.00098
D3 8 0 MDD2
IT 0 8 0.001
**
* L models the lead–to–silicon connection package inductance
L 7 2 2.44e−9
*
.ENDS SMB28A
**

NUP2105 Macro–Model

NUP2105 Dual Line Bi-Directional TVS Diodes
SOT-23 Package

**
* NUP2105 PSPICE macro–model
 * Bi–directional TVS avalanche diode, SOT–23 package, V_{BR} = 26.4 V
 * Model simulates 1 of the 2 I/O lines

**
* DA Cathode DB Cathode D_{A,B} Common Anode
.SUBCKT NUP2105 1 2 3
 * Bidirectional devices are formed from two uni–directional devices
X1 3 1 HALFNUP2105
X2 3 2 HALFNUP2105
.ENDS NUP2105
**
* Model HALFNUP2105 represents one bi–directional pair of a dual device
* Anode Cathode
.SUBCKT HALFNUP2105 7 1
 * Forward Region
 * D1's CJO term models the capacitance
D1 2 1 MDD1
.MODEL MDD1 D IS=1.83708e−14 N=1 XTI=1 RS=0.2
+ CJO=26.4e−12 TT=1e−08
**
* Leakage Region
 * RL models leakage current (I_L)
 * MDR temp. coef. model \(\Delta I_L / \Delta T \)
RL 1 2 MDR 4.32244e+08
.MODEL MDR RES TC1=0 TC2=0
**
* Reverse Breakdown Region
 * RZ models the \(\Delta I / \Delta V \) slope
RZ 2 3 1.28
D2 4 3 MDD2
.MODEL MDD2 D IS=2.5e−15 N=0.5
 * Breakdown Voltage (V_{BR}) = IBV x RBV
EV1 1 4 6 8 1
IBV 0 6 0.001
RBV 6 0 MDRBV 26357.1
 * MDRBV temp. coef. model \(\Delta V_{BR} / \Delta T \)
.MODEL MDRBV RES TC1=0.00096
D3 8 0 MDD2
IT 0 8 0.001
**
* L models the lead–to–silicon connection package inductance
 * L is distributed between two diodes for bi–directional diodes
L 7 2 1.24e−9
* .ENDS halfnup2105
**