Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
EE Times-Asia > Amplifiers/Converters

EEPROM-configurable system monitors suit high-end apps

Posted: 06 Nov 2007 ?? ?Print Version ?Bookmark and Share

Keywords:EEPROM? system monitors? product reliability?

Maxim Integrated Products has introduced EEPROM-based system monitors with non-volatile fault memory. The MAX16031/MAX16032's integrated signal monitoring, threshold and fault monitoring, high-accuracy ADC and flexible dual interface allow the customer both to react to, and address stray system signals more efficiently than was possible before.

These capabilities promise product reliability and increase overall system productivity. The parts also help identify the cause of board failures in the event of board returns.

As system requirements and ASICs are constantly changing, it is difficult to predict the exact values required in a new design. Therefore, devices with on-board EEPROM configurability allow designers to adjust values to their changing system requirements without requiring more components and inventory.

The principal application for the MAX16031/MAX16032 is high-end systems where a large number of voltage rails exist in a single system. Specific applications include servers, telecom and networking equipment.

Highly integrated functions
The MAX16031/MAX16032 monitor one high-side current, three temperatures and eight voltages with 1-percent accuracy. The devices not only monitor multiple analog signals, but they simultaneously measure, convert (through the on-board ADC) and compare these signals to the user's programmed thresholds. With all these capabilities integrated into a single supervisory product, users can easily control and protect sensitive components in a closed-loop system.

If an overcurrent condition occurs, the high-side current monitor notifies the system controller of the fault. The system controller can then take immediate action to prevent further damage to the system, which ultimately saves time and money for the user.

Two external and one internal temperature sensors allow the user to monitor two remote board temperatures and the MAX16031/MAX16032's internal die temperature. Such broad temperature monitoring across the system allows for accurate readings, which results in faster response to damaging overtemperature conditions.

The eight voltage inputs can monitor voltages single-ended or pseudo-differentially. These dual-input structure types give the user the option of higher speed or the ability to cancel common-mode DC voltages for higher accuracy. Users thus benefit by decreasing design time when initially selecting performance characteristics.

MAX16031/MAX16032's on-board, user-configurable EEPROM provides faster implementation in system design, which translates to shorter overall development time.

On-board EEPROM allows the user to configure threshold limits, fault output dependencies, GPIO functionality, input operating ranges and operating modes. The configuration threshold limits allow two undervoltage, two overvoltage, two overcurrent and two overtemperature thresholds. Given both early warning and critical fault alerts, the customer gains additional time to respond to voltage, current, or temperature deviations from their set values.

Three fault outputs are programmable. Besides a primary active-low RESET output, the user can also configure two additional fault outputs. Thus, the customer has full control over which threshold violations will trigger the fault output to assert. Additionally, the MAX16031/MAX16032 contains user EEPROM for storing miscellaneous data and for logging fault register values.

Users can communicate with the MAX16031/MAX16032 through either an SMBus/I?C-compatible interface or a JTAG interface. This flexible interface makes the devices useful in any major international marketplace where reliability, integration and performance are paramount. This versatility maximizes productivity between departments, offices, or locations that use differing interface technologies.

Greater accuracy
The MAX16031/MAX16032 also integrate a 10bit, 1-percent accurate ADC that ensures accurate detection of a threshold violation. Three scalable input ranges provide even finer resolution. Faster response time and greater system accuracy are the main customer benefits of this ADC.

A unique advantage of the MAX16031/MAX16032 is its capability to operate from a 2.85V to 14V range. This wide voltage range answers customers' demand for supervisors that can operate directly from an intermediate bus voltage. Now customers can save time and money by avoiding the need for extra components that divide the bus voltage into a lower operating range.

The MAX16031/MAX16032 operate over a -40C to 85C temperature range. This operating range is important to ensure that devices operate reliably in applications where high temperatures are prevalent, such as server racks and networking closets. This part is packaged in a small 7mm x 7mm, 48-pin, TQFN package.

Article Comments - EEPROM-configurable system monitors ...
*? You can enter [0] more charecters.
*Verify code:


Visit Asia Webinars to learn about the latest in technology and get practical design tips.

Back to Top