Power Tip: Trade AC-line range for input-capacitor ripple current
Keywords:power supply? ripple-current rating? capacitor?
This impacts the transformer turns ratio and various voltage and current stresses within the power supply. A larger capacitor ripple current rating means less stress and a more efficient power supply.
Figure 1 and figure 2 present two rectifier configurations used in offline power supplies. Figure 1 is a full-wave bridge, where the AC input voltage is simply rectified and fed to a capacitor. This type of circuit is popular in wide-range AC and 230-volt AC applications. The capacitor charges to the peak of the sine wave and is discharged for the majority of the half-period.
There are two components to the ripple current in the capacitor. The first is the charge period, where the current is set by the value of the capacitor and the applied dV/dt. The second is the discharge of the capacitor.
Power supplies act as constant-power loads, so the capacitor discharges at a non-linear rate and can be calculated as a change in energy:
W = ? C V^{2} = P dt.
Figure 1: Full-wave bridge is used in many offline designs. |
Figure 2 illustrates a voltage doubler rectifier configuration which is used in many 115/230 VAC applications. If you have a 230 VAC application, your input stage needs to handle voltages as high as the maximum input voltage (265 VAC) times the crest factor, or nearly 400 volts.
The voltage doubler, when used with a 115 VAC input, boosts the rectified voltage to near the level of the 230 VAC input. The power supply then can be designed for only the 230 VAC line, reducing the rectified voltage range over which the power supply operates.
Switching between rectifier configurations is usually done with a jumper or switch. The only downside to this approach is that occasionally someone doubles a 230 VAC input and wreaks havoc with the power supply.
Figure 2 also shows some of the waveforms within the doubler circuit. The neutral is connected between capacitors. Two rectifiers apply the input voltage to each capacitor alternately. Each capacitor is charged to the peak line voltage once a cycle, so they each have a line-frequency ripple component. Since the capacitors are charged out-of-phase, the ripple frequency from their sum is twice the line frequency.
Figure 2: A voltage doubler reduces power-supply line range. |
Figure 3 provides voltage droop normalized by?F/W for four rectifier/input voltage options. There are three full-wave bridge options for low-line US (108 VAC/60 Hz), low-line Japan (85 VAC/50 Hz) and low-line European (216 VAC/50 Hz) mains. There is also a doubler with low-line Japan.
Related Articles | Editor's Choice |
Visit Asia Webinars to learn about the latest in technology and get practical design tips.