Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
EE Times-Asia > Optoelectronics/Displays

CFL bulb teardown〞What makes it a green solution?

Posted: 08 Aug 2011 ?? ?Print Version ?Bookmark and Share

Keywords:compact fluorescent lamp? LED lamp? incandescent bulb?

The lighting landscape is now changing as more and more states in the United States begin the process of phasing out the traditional incandescent bulb. This landscape includes lighting alternatives that offer less energy consumption, better durability and a longer shelf-life than the Edison-devised model that has been the "go-to" for light for the better part of a century. The reduced energy consumption also saves consumers money每 which is always appealing.

Two of those alternatives that are beginning to reach mass market appeal are the compact fluorescent lamp (CFL) and the LED lamp. Both offer the positive benefits mentioned above but for the purpose of this teardown, we will be focusing on CFL technology. In particular, we will be looking at a non-dimmable CFL demonstration lamp made by Chinese manufacturer, Baishi.

image name

CFL Technology 每 35 years in the making
The spiral tube CFL was first introduced in 1976 by Edward E. Hammer, considered by many to the father of modern fluorescent lamp technology. Though the design was a great improvement over the incandescent bulb, his employers at General Electric shelved the design. The first introduction of a lamp with an electronic ballast was made by Osram in 1985, but it wasn't until 1995 that CFL bulbs began commercial production.

Examining what makes this lamp at 20-Watts produce the same illumination as a 75-W incandescent bulb requires a look at each component that comprises the lamp. Like many of its fluorescent lamp cousins, this CFL uses U-shaped glass tubes whose phosphor lining emits from UV radiation manufactured by ionized gas in the tube.

To achieve a size that would be primed for the housing market, CFLs exhibit a design that typically use a smaller tube diameter and/or through folded or spiral-wound construction. The electronic ballast, that is used to light the tube, is designed into a manner that remedies the space constraints of a standard screw-into-socket bulb. To do this, a downsized supply is used to create a suitable lamp drive in relatively small footprint of area.

image name

The phosphor-coated U-shaped glass tube has its own evolved history in manufacturing but that is a history more suited for chemical engineering buffs. From the perspective of the consumer, wearing out of lamp phosphors within the tube remains the primary issue. Still, the lifetime of quality CFLs can run from months to even years.

Ballast issues
Also of note by looking at this particular CFL, the occurrence of vent holes in the lamp-base enclosure. This suggests that heat-related wear out of ballast electronics are also a factor.

image name

The typical electronic ballast consists of a small circuit board and it is this board that allows consumers to replace incandescent bulbs easily with CFL alternatives. The electronic ballast provides the initial boost of energy to start the lamp and then limits the current to its operating value for the tube that is being used.

Transistors, diodes, and collection of capacitors and inductors are placed into the ballast design to first rectify the AC power and create a follower resonant inverter circuit that generates the high-frequency, high-voltage power used to fire the lamp. Within this electronic ballast, one of the most important components is UBA2211 Half-Bridge power IC from NXP.

The UBA2211 Half-Bridge is capable of driving lamps up to 25 W from 110 or 220 V-AC input, necessary in any electronic ballast found in modern CFLs. One of the prime benefits of the UBA2211, however, is the inclusion of Over Temperature Protection (OTP) and Capacitive Mode Protection (CMP) within the circuit. OTP and CMP monitor the voltage, current and power dissipation and, in non-standard conditions, ensure correct system shutdown and safe conditioning at the burner during end-of-life. During the initial "kick" of power during the CFL's startup, Saturation Current Protection (SCP) is also provided by the UBA2211 so that the CFL is capable of operating at the saturation current limit without potentially damaging the power transistors in the electronic ballast.

image name

CFL 每 A "green" solution in more ways than one
This article didn't answer the age old question of "How many engineers does it take to screw in a light bulb?" but it did answer how many engineers does it take to take one apart. In the case of the CFL, intricate power circuitry is revealed when we do take it apart which also reveals how it has gotten to a place within the market that the combination of lamp and electronic drive circuits can now be brought to general consumers at prices that start to rival the (relatively) short-lived incandescent alternative.

Pricing differences still exist 每 a typical incandescent bulb costs only a quarter where CFLs still neighbor in the $1 to $2 range 每 but the real advantage comes from the potential energy savings. Though the incandescent bulb is 25 cents, the cost to operate that bulb over its average lifetime is $7. The CFL bulb, through its lifetime (a much longer lifetime), presents a cost of only a $1.50. In that sense, not only is the CFL bulb a "green" solution from the perspective of reducing energy, but also a "green" solution for keeping more green in your wallet.

- Allan Yogasingam
??Technical Marketing Analyst
??UBM TechInsights

Article Comments - CFL bulb teardown〞What makes i...
*? You can enter [0] more charecters.
*Verify code:


Visit Asia Webinars to learn about the latest in technology and get practical design tips.

Back to Top