Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
EE Times-Asia > Sensors/MEMS

Boost automotive electrical integration using sensor module (Part 1)

Posted: 14 Feb 2012 ?? ?Print Version ?Bookmark and Share

Keywords:sensor? Automotive engines? real-time monitoring?

Given the deployment of state-of-the-art sensor-based control systems that provide precise real-time monitoring, automotive engines now operate more efficiently and with lower environmental impact. One result of this improved performance is that the number of sensor applications in vehicles has realized double-digit growth over the past several years. The other result is a growing trend to add more sensor modules to vehicles. Such modules must be reliable and robust and operate with long-term stability and high precision under harsh physical, chemical, and electrical stress conditions.

Additionally, a set of built-in-diagnostic functions is required for automotive sensor modules to support the "maintenance-on-demand" policy of automotive OEMs as well as special failure-mode-operations required for safety-critical sensor applications like brake pressure sensing.

The chemical (i.e. media/humidity/corrosion resistance) and physical (shock; vibrations) robustness of sensor modules is mainly determined by the materials used, and the assembly and connection technologies. The electrical robustness (i.e. EMC) is determined by the application circuit, the chosen electric components (ICs, discrete parts), and the layout of the electrical connections, according to the application circuit.

This series will describe the latter aspect of the design of an automotive sensor module. The module incorporates a sensor signal conditioner to enable the design of highly accurate sensor modules operating at temperatures of -40 to +150C and providing EMC performance and a set of on-chip-protection and diagnostic features addressing safety-critical applications at SIL2-level. By clever electrical design of the sensor module considering all EMC-related parameters (i.e. parasitic capacitances and inductances), high electrical robustness and built-in-diagnostic functionality can be achieved at optimized module cost, together with very high accuracy of the measured signal.

Because the mechanical design and the interconnection between a sensor system and the processing unit have a major influence on their electromagnetic behavior, it is essential to separate "embedded sensing functions" and "standalone-sensor modules".

In case of embedded sensing functions (ESF) the sensor electronics are placed closed to the processing unitin automotive applications this is an Electronic Control Unit (ECU). The connections between ESF and ECU are typically very short (SPI), which is connected to the microcontroller of the ECU. Because of this closed placement on the same PCB there are several options in order to fulfill the tough automotive requirements in terms of EMC (i.e. shielding or use of external protection parts). One example for an ESF is barometric pressure sensing.

For standalone-sensor modules (SASEM), the situation is completely different. These are typically connected to an ECU via an unshielded harness of up to 2.5m in length. The available board space inside the module's case (made of metal or plastic) is very limited and trends to further miniaturization because lower material consumption equals lower weight, which in turn equals lower cost.

Depending on the mode of power supply (battery-powered or ECU-powered) there are various output interfaces:

Battery-powered SASEM:
???PWM output (high-side-load)
???PWM output (low-side-load)
???CAN-bus interface
???LIN-bus interface
???Absolute analog voltage output

ECU-powered SASEM:

???Ratiometric analog voltage output
???SENT interface (fast digital unidirectional point-to-point data transfer)
???PSI5 interface (digital 2-wire-current-coded data transfer)

For passenger cars it is still very common to use ECU-powered SASEMs, which provide a ratiometric analog voltage output. The typical supply voltage amounts to 5 VDC 10% and the current consumption of a SASEM should amount to 10 mA. The operational conditions are quite harsh as mentioned at the beginning, which leads to the exclusion of some effective passive protection parts such as ferrite beads, which operate at temperatures only up to +125C.

1???2?Next Page?Last Page

Article Comments - Boost automotive electrical integrat...
*? You can enter [0] more charecters.
*Verify code:


Visit Asia Webinars to learn about the latest in technology and get practical design tips.

Back to Top