Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
EE Times-Asia > T&M

Troubleshoot, verify 8b/10b encoded signals with real-time scope

Posted: 05 Oct 2012 ?? ?Print Version ?Bookmark and Share

Keywords:8b/10b coding? transformers? optical channels?

Few serial technologies have become more extensively adopted than 8b/10b coding, which is now used in standards like PCI-Express, Serial ATA, SAS, Fibre Channel, InfiniBand, FireWire, MIPI M-PHY, HDMI, DisplayPort, CIPRI, OBSAI, XAUI, USB3.0 and others.

Therefore, any designer will eventually need the ability to efficiently analyze 8b/10b encoded signals using common instrumentation such a real-time oscilloscope. The intent of 8b/10b line coding is to achieve DC balance and provide enough state changes to ensure stable clock recovery. Since DC balance is maintained, 8b/10b signals can be transmitted through transformers, optical channels or AC coupled links which have DC offsets at the pins of their integrated circuits.

AC coupled data signals would have DC drifts depending on the data content. A long sequence of 1s will lead into positive drift and many 0s will drift toward negative voltage, as shown in figure 1. Without correction it will cause errors at the receiver side since a fixed threshold is being compared to the drifting voltage level of the data signal.

Figure 1: DC drifts without 8b/10b encoding.

As shown, 8b/10b line coding will compensate for these effects by mapping 8 bits of data to 10 bit symbols (or characters). Each 8 bit word corresponds to two 10b characters to ensure the long term ratio between 1�s and 0�s is nearly 50 percent, as outlined in figure 2.

The difference in numbers between 1s and 0s is called "running disparity" (RD) and it is either +1 or -1. Therefore the encoding of one 8 bit data word will change depending on the preceding symbol at the speed of the data rate.

Figure 2: 8b/10b coding maintains DC level and ensures clock recovery.

With high-speed serial signals now delivering multiple gigabits per second, they require very high bandwidth in the physical layer for their links. One way to verify the performance of serial links is compliance testing. Usually compliance tests are used for characterization at a final state of the design. If the compliance test passes everything is fine. If not, debugging of the physical layer might become necessary.

A first step is often to look for measurements that are out of range related to the appropriate standard's specifications. This can indicate where to perform further measurements and suggest actions to solve the problem. If this does not solve the problem, the engineer can look at a composite of all data values and transitions on the bus using an eye diagram.

The eye diagram can show issues related to noise, jitter, and signal integrity. It can also be used to check for violations of an eye diagram mask which are specified in many industry standard compliance tests. Any kind of degradation of the signal will cause less margin or more hits in the eye mask.

1???2???3???4?Next Page?Last Page

Article Comments - Troubleshoot, verify 8b/10b encoded ...
*? You can enter [0] more charecters.
*Verify code:


Visit Asia Webinars to learn about the latest in technology and get practical design tips.

Back to Top