Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
EE Times-Asia > Manufacturing/Packaging

Peek at the future of aerospace brazing

Posted: 03 Jan 2013 ?? ?Print Version ?Bookmark and Share

Keywords:gas turbine engines? sintered performs? braze alloys?

In response to the aerospace industry�s focus on higher performance and lower costs, material scientists and ceramics component manufacturers have been developing new materials and processes that allow engines to run hotter and hotter.

In gas turbine engines a large amount of air from the compressor is used to cool the turbine vane and blades. The amount of air needed is determined by turbine temperature and the materials that need to be cooled. If the turbine materials need less cooling or can be made from materials that can withstand higher temperatures, this would make more air available for propulsion. Increasing the turbine's temperature capability is thus key to improving engine efficiency. However, engines run hotter as processing temperature is increased, and this increased heat tends to degrade metals.

Inside turbines, pre-sintered preforms (PSPs) are being used to repair vanes that are breaking down due to excessive heat and wear. PSPs, with a small amount of braze alloy mixed with the parent metal, are used primarily in the turbine section for repairing vane cracks and wear areas. As temperatures continue to climb in these zones, new materials and technologies are being developed to create a better thermal barrier. This is expected to significantly lower maintenance, repair and overhaul (MRO) costs. Examples include the development of advanced braze alloys, the use of ceramics on high temperature metal to ceramic components, and the introduction of active brazing, which allows metal to be bonded directly to ceramic without metallisation.

Braze alloys developed for high temp apps
Braze alloys are used in a variety of advanced military aircraft and commercial aerospace engine components and grades are being developed that directly bond ceramic to metal or other materials. Alloy compositions vary and include those designed for functional use in very high-temperature applications (750-850C).

Alloys are selected to meet the specific service temperature conditions as well as the requirements of all the components to be joined. Examples include alloys used in new turbine hot sections, brazing silicon nitride ceramic to new super alloy engine parts. The table provides an overview of available braze alloys, showing the engine part it is used in and the component/base material.

Table: An overview of available braze alloys, showing the engine part it is used in and the component/base material.

Most modern airliners use turbofan engines because of their high thrust and good fuel efficiency. A turbofan gets some of its thrust from the core and some from the fan. Incoming air is captured by the engine inlet. Some of the incoming air passes through the fan and continues on into the core compressor and then the burner, where it is mixed with fuel and combustion occurs. The hot exhaust passes through the core and fan turbines and then out the nozzle. The rest of the incoming air passes through the fan and bypasses the engine, similar to air through a propeller. The air that goes through the fan has a slightly increased velocity.[1]

The figure shows a diagram of a typical turbofan engine, showing the most common locations for use of alloys, including those used for the engine's "cold section" (air inlet and compressor) and its "hot section" (turbine and combustion chamber).

1???2?Next Page?Last Page

Article Comments - Peek at the future of aerospace braz...
*? You can enter [0] more charecters.
*Verify code:


Visit Asia Webinars to learn about the latest in technology and get practical design tips.

Back to Top