Research targets highly energy-efficient CMOS logic systems
Keywords:Tokyo Institute of Technology? CMOS? logic system? volatile SRAM? power-gating?
Developments in low power, high performance CMOS logic technology are vital to the future of microprocessors and SoC devices for personal computers, servers and mobile/smartphones. Much of the processing in these computing systems is carried out using a volatile hierarchical memory system in which bistable circuits such as static random access memory (SRAM) and flip-flop (FF) play an essential role for fast data-access. However, the power to these bistable circuits cannot be switched off without losing their data. This inability to turn off power is a fundamental problem for energy consumption in CMOS logic systems.
The method for saving energy in CMOS logic systems, called power-gating, uses architecture to cut the supply voltage to idle circuit domains, effectively putting them to power shut-off state to avoid leakage and thereby save static energy.
Over the past few years, Satoshi Sugahara and his team have been developing non-volatile bistable memory circuits (NV-SRAM and NV-FF) required to establish non-volatile power-gating systems with better overall performance and energy efficiency than conventional power-gating systems. In particular, the researchers have built pseudo-spin metal-oxide-semiconductor field-effect transistors (PS-MOSFETs) for use in the non-volatile bistable memory circuits.
The PS-MOSFET can be configured with an ordinary MOSFET coupled with a spin-transfer torque magnetic tunnel junction (STT-MTJ), and it can reproduce the functions of spin-transistors in which different electrons spin states or magnetisation configurations of the ferromagnetic electrodes are used to control transistor output. Spin transistors can also store non-volatile information. In a typical bistable memory circuit, an inverter loop consisting of cross-coupling two CMOS gates is used to store each memory bit. In the new non-volatile bistable circuits, PS-MOSFETs are added to the inverter loop.
Previous attempts to build non-volatile bistable circuits with STT-MTJs have resulted in performance degradation, because the STT-MTJs interfere with their fundamental circuits of the inverter loops. To overcome this problem, the team designed NV-SRAM and NV-FF circuits using PS-MOSFETs. In these circuits, the STT-MTJs can be electrically separated from the inverter loops by the PS-MOSFETs and thus have no degradation effects on the bistable circuit performance.
The NV-SRAM and NV-FF circuits built by Sugahara's team have performed well under tests so far, compared to conventional SRAM/FF circuits. They also developed architectures for minimising break-even time (that is an important performance index of power-gating) of the NV-SRAM and NV-FF circuits, including a 'store-free' shutdown, wherein existing data is not rewritten, thereby dramatically saving energy.
The new transistor and circuit designs could be pivotal in the development of faster, more energy-efficient processing in future CMOS logic systems, said the researchers.
Visit Asia Webinars to learn about the latest in technology and get practical design tips.