Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
EE Times-Asia > Memory/Storage

Electrodes offer RRAM compatibility with existing circuitry

Posted: 28 Jan 2014 ?? ?Print Version ?Bookmark and Share

Keywords:A*STAR Institute of Microelectronics? electrode? RRAM? memory? NAND flash?

A team of researchers from A*STAR Institute of Microelectronics has designed nickel-based electrodes that can couple resistive random access memory (RRAM) to CMOS systems as well as reduce the current required to switch the RRAM between memory states. This breakthrough is in light of the existing demand for the computing industry to provide faster access to data and reduce power consumption.

As current memory systems cannot meet these demands indefinitely, it is essential to develop entirely new technologies. RRAM in particular stores binary information by switching a dielectric material between conducting and non-conducting states. A seamless transition to this technology requires that RRAM memory cells be compatible with existing electronics, which are usually based on CMOS.

"One of the current most dominant memory systems, NAND flash, is expected to reach the limit of its scalability in 2017 or 2018," said Peng Wang, researcher at A*STAR Institute of Microelectronics. "We need to identify emerging non-volatile memory systems with higher densities, to make up the market. Recently, RRAM has attracted lots of attention due to its fast programming and erasing speeds, high endurance and good retention of data."

Preventing neighboring RRAM cells from interfering with one another requires each cell to contain a selector made from a diode or transistor. Diode selectors have proved difficult to implement, therefore Wang and co-workers aimed to make RRAM stacks that were compatible with CMOS transistors.

To build the prototype RRAM cells, the researchers used three layers. They used physical vapor deposition to create a bottom electrode of nickel silicide or nickel germanosilicide, before adding a central dielectric switching layer of hafnium oxide, and a final top electrode of titanium nitride.

The researchers found that they could quickly and reliably switch the memory state of their cells, using very low operating currents. They suggest that the switching is enhanced by oxidation and reduction of nickel at the interfacial layer between the electrode and the dielectric. By providing more mobile oxygen species, these reactions might accelerate the formation and rupture of conductive filaments.

"Our electrodes can be easily formed on the source or drain terminal of a transistor," noted Wang. "In fact, our design effectively uses a CMOS transistor source or drain directly as the bottom electrode in a RRAM cell. This can lower the total cost and improve the scalability."

In future, Wang and co-workers hope to shrink their nickel-based RRAM cells to a practical circuit scale to bring this promising technology into production.

Article Comments - Electrodes offer RRAM compatibility ...
*? You can enter [0] more charecters.
*Verify code:


Visit Asia Webinars to learn about the latest in technology and get practical design tips.

Back to Top