Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
EE Times-Asia > Networks

Managing heterogeneity with Cloud-RAN

Posted: 24 Feb 2014 ?? ?Print Version ?Bookmark and Share

Keywords:3GPP? Cloud-RAN? C-RAN? Centralized-RAN? cellular network?

The wireless infrastructure network is undergoing a vital phase of technology evolution. A slew of equipment form factors are being rolled out to meet perpetual growth in capacity demand. All these solutions are gravitating towards maximising the potential of precious and limited spectrum resource.

The 3rd Generation Partnership Project (3GPP) is a collaboration among groups of telecommunications associations. Its standardisation efforts are devising ways to pack more and more bits into available spectrum within the capacity constraints governed by Shannon's law, but the wireless radio network is on the move to create topologies that allow fewer users per node to extract more bandwidth from the same spectrum.

There are two major macro trends pushing the network expansion in completely opposite directions. The first macro trend is deployment of an underlay of tens of small cells per macro base station, initially to improve coverage and then to deliver capacity by serving a small set of users. This trend enables the radio access network to support a higher density of callers for a given area, but it also creates complexity and scale challenges in the backhaul network. The second macro trend is splitting the traditional centralized base station into a network. The radios are located remotely, and the base station chassis is made solely of base band functions. This split into distributed base stations allows ease of scalability in terms of increasing the density of base band processing as well as the number of connected remote radio heads to address coverage and capacity needs effectively.

Cloud-RAN (also referred to as C-RAN and Centralized-RAN) is a new cellular network architecture for the future mobile network infrastructure. It is a network of high-density base stations connected to a large number of distributed remote radio heads. The concept is mobilizing technologies from wired networks to pool base band resources using virtualisation technologies. This is resulting in significant changes in base band card architecture and design. Also, every radio node within Cloud-RAN is designed to connect to any channel card. The connectivity and algorithmic functions on the radio are also changing to leverage resource sharing effectively for load balancing and network failover. The Cloud-RAN trend simplifies backhaul but adds complexity to the connectivity between the base station chassis and the multitude of remote radio heads, also referred to as the fronthaul network.

There is no clear winner between these two trends. Both distributed base stations and micro/pico cells have been in use for some time, and they are more than likely to continue to coexist. The resulting heterogeneity in the network and varying complexities in backhaul and radio access networks pose significant network management challenges. Cloud-RAN network technologies can be used to manage the underlying heterogeneity and leverage associated intelligence to run networks more effectively and create viable service platforms. Operators and system vendors will need to work collectively in standardising some critical elements of the wireless infrastructure to bring about a cohesive framework that eases adoption and guides a series of innovations to realise the full potential benefits.

Figure 1: Traditional base station architecture.

Figure 2: Distributed base station and remote radio heads.

Unlike wired networks, wireless radio access networks comprising base stations and associated access connectivity abound in proprietary and pseudo-standards. The transition to standards-based connectivity and synchronisation is an important step for performance improvement, interoperability, and economies of scale. This is a critical milestone for the realisation of Cloud-RAN. Gradual adoption of Ethernet as the standard connectivity within a radio access network, and timing over packets, is helping fuel innovation in the right direction. Care has to be taken to create solutions that aptly serve the need for coexistence with legacy equipment, cost of deployment, and scalability concerns.

Timing and synchronisation are key elements to keep all the nodes in the Cloud-RAN synchronised and coordinated. Small cells have similar needs. Base stations synchronise with the core network using a combination of multiple timing and synchronisation inputs. GPS and legacy TDM networks, such as T1/E1 lines, continue to be used along with the packet timing protocol (PTP 1588v2) and synchronous Ethernet. Today PTP and synchronous Ethernet are mainstream technologies that manage synchronisation within the wireless infrastructure.

1???2?Next Page?Last Page

Article Comments - Managing heterogeneity with Cloud-RA...
*? You can enter [0] more charecters.
*Verify code:


Visit Asia Webinars to learn about the latest in technology and get practical design tips.

Back to Top