Sand is the holy grail of Li-ion anodes
Keywords:sand? silicon? battery? Li-ion?
The Ozkan team was pleased with how the process went. And they also encountered an added positive surprise. The pure nano-silicon formed in a very porous 3-D silicon sponge like consistency. That porosity has proved to be the key to improving the performance of the batteries built with the nano-silicon.
The improved performance could mean expanding the expected lifespan of silicon-based electric vehicle batteries up to 3 times or more, which would be significant for consumers, considering replacement batteries cost thousands of dollars. For cell phones or tablets, it could mean having to recharge every three days, instead of every day.

Figure 2: Schematic showing how sand is turned into pure nano-silicon. Source: UCR
The findings were just published in a paper, "Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries," in the journal Nature Scientific Reports. In addition to Favors and the Ozkan's, authors were: Wei Wang, Hamed Hosseini Bay, Zafer Mutlu, Kazi Ahmed and Chueh Liu. All five are graduate students working in the Ozkan's labs.
Now, the Ozkan team is trying to produce larger quantities of the nano-silicon beach sand and is planning to move from coin-size batteries to pouch-size batteries that are used in cell phones.
The research is supported by Temiz Energy Technologies. The UCR Office of Technology Commercialisation has filed patents for inventions reported in the research paper.
Related Articles | Editor's Choice |
Visit Asia Webinars to learn about the latest in technology and get practical design tips.