Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
?
EE Times-Asia > Power/Alternative Energy
?
?
Power/Alternative Energy??

Surprising discovery reveals enhanced battery

Posted: 22 Apr 2016 ?? ?Print Version ?Bookmark and Share

Keywords:Pacific Northwest National Laboratory? battery? zinc-manganese? grid?

To dig deeper, they examined the electrodes with several advanced instruments with a variety of scientific techniques, including Transmission Electron Microscopy, Nuclear Magnetic Resonance and X-Ray Diffraction. The instruments used were located at both PNNL and the Environmental Molecular Sciences Laboratory (EMSL), a DOE Office of Science user facility located at PNNL. Combining these techniques revealed manganese oxide was reversibly reacting with protons from the water-based electrolyte, which created a new material, zinc hydroxyl sulfate.

Typically, zinc-manganese oxide batteries significantly lose storage capacity after just a few cycles. This happens because manganese from the battery's positive electrode begins to sluff off, making the battery's active material inaccessible for energy storage. But after some manganese dissolves into the electrolyte, the battery gradually stabilizes and the storage capacity levels out, though at a much lower level.

A simple fix

The team used the new knowledge to prevent this manganese sluff-off. Knowing the battery underwent chemical conversions, they determined the rate of manganese dissolution could be slowed down by increasing the electrolyte's initial manganese concentration.

So they added manganese ions to the electrolyte in a new test battery and put the revised battery through another round of tests. This time around, the test battery was able to reach a storage capacity of 285mA-h/g of manganese oxide over 5,000 cycles, while retaining 92 per cent of its initial storage capacity.

"This research shows equilibrium needs to be controlled during a chemical conversion reaction to improve zinc-manganese oxide battery performance," Liu said. "As a result, zinc-manganese oxide batteries could be a more viable solution for large-scale energy storage than the lithium-ion and lead-acid batteries used to support the grid today."

The team will continue their studies of the zinc-manganese oxide battery's fundamental operations. Now that they've learned the products of the battery's chemical conversion reactions, they will move on to identify the various in-between steps to create those products. They will also tinker with the battery's electrolyte to see how additional changes affect its operation.

This research was supported by DOE's Office of Science and used resources at the Environmental Molecular Sciences Laboratory (EMSL), a DOE Office of Science user facility located at PNNL.


?First Page?Previous Page 1???2



Article Comments - Surprising discovery reveals enhance...
Comments:??
*? You can enter [0] more charecters.
*Verify code:
?
?
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

?
?
Back to Top