
Rev. 0.1 11/07 Copyright © 2007 by Silicon Laboratories AN219

AN219

Using Microcontrollers in Digital Signal Processing Applications

1. Introduction
Digital signal processing algorithms are powerful tools that provide algorithmic solutions to common problems. For
example, digital filters provide several benefits over their analog counterparts. These algorithms are traditionally
implemented using dedicated digital signal processing (DSP) chips, FPGAs, or RISC processors. While these
solutions are very efficient at their purpose, they only perform one function in the system and can be both
expensive and large. This application note discusses an alternative solution using a Silicon Labs microcontroller to
implement DSP algorithms in less space and still have plenty of CPU bandwidth available for other tasks.

This application note discusses the implementation of three DSP solutions on the C8051F12x and C8051F36x
family of microcontrollers:

FIR filters
Goertzel Algorithm used for DTMF decoding
FFT algorithm

For each of these topics, we introduce the algorithm, discuss the implementation of these algorithms on the DSP-
enabled MCUs using the multiply and accumulate (MAC) engine, and provide a list of the CPU bandwidth and
memory usage.

1.1. Key Points
The 100 peak MIPS CPU, 2-cycle 16x16 MAC engine and on-chip ADC and DAC make the C8051F12x and
C8051F36x well suited to DSP applications. Using these resources on a C8051F36x microcontroller, a 5x5 mm
8-bit MCU can process data in real-time for FIR filters and Goertzel Algorithms for DTMF decoding and implement
a full FFT.

2. Digital FIR Filters
Filters have many applications, including narrowing the input waveform to a band of interest and notching out
undesired noise. Digital filters have some benefits over their analog counterparts. For example, they are extremely
reconfigurable since they only rely on digital numbers, which are easily changeable, to determine the filter
behavior. The response of analog filters is determined by external components, which must be replaced if the
filter’s behavior is to be altered. Additionally, digital filters typically require fewer external components, which
reduces manufacturing cost and improves reliability. External components, such as resistors and capacitors, can
also be sensitive to temperature change and aging effects, which can alter the filter’s behavior if the environment
changes. Since a digital filter is algorithmic, its behavior is not affected when the environment changes.

There are two types of digital filters: infinite impulse response (IIR) and finite impulse response (FIR). IIR filters
have a non-zero response over time to an input impulse. The output of an IIR filter relies on both previous inputs
and the previous outputs. FIR filters settle to zero over time. The output of an FIR filter relies on previous inputs
only and does not rely on previous outputs.

2.1. Digital Filter Algorithms
The digital filter equations are based on the following basic transfer function shown in the z domain:

Y(z) = H(z)X(z),

where Y(z) is the filter output, X(z) is the filter input, and H(z) is the transfer function of the filter.

H(z) can be expanded as follows:

where a and b are sets of coefficients and z is a delay element.

Y z() b 1() b 2()z 1– … b+ + + n 1+()z n–

a 1() a 2()z 1– … a+ + + n 1+()z n–
---X z()=

AN219

2 Rev. 0.1

2.1.1. IIR Filter Algorithm
The IIR topology extends directly from this equation by moving the denominator of the expanded H(z) to the left
side of the equation:

(a(1)+a(2)z–1+…+a(n+1)z–n)Y(z) = (b(1)+b(2)z–1+…+b(n+1)z–n)X(z)

In the time domain, this equation appears as follows:

a(1)y(k) + a(2)y(k –1)+…+a(n+1)y(k –n) = b(1)x(k) + b(2)x(k –1)+…+b(n+1)x(k –n)

where y(k) represents the current filter output, x(k) represents the current input, y(k-1) represents the previous
output, x(k-1) represents the previous input, and so on. If this equation is solved for y(k):

This equation shows that the IIR filter is a feedback system, which generates the current output based on the
current and previous inputs as well as the previous outputs. The IIR structure has unique advantages and
drawbacks. The main advantage of the IIR structure is that it provides a frequency response comparable to an FIR
filter of a higher order. This results in fewer calculations necessary to implement the filter. IIR filters can suffer from
instability because they rely on feedback. As a result, they are more difficult to design and special care must be
taken to prevent an unstable system. IIR filters may also have a non-linear phase response, which can make them
inappropriate for some applications where linear phase is necessary. Finally, because they rely on past outputs,
they tend to be more sensitive to quantization noise, making them difficult to implement with 16-bit fixed point
hardware. Generally, 32-bit hardware is necessary for an IIR filter implementation.

2.1.2. FIR Filter Algorithm
In contrast, an FIR filter has no feedback. The filter transfer function can be derived in the same way as before.
However, there is only one a coefficient and it is equal to one (a(1) = 1). When solving the equation for y(k):

For the FIR algorithm, the current output is generated based only on the current and previous inputs. In effect, an
FIR is a weighted sum operation.

FIR filters have several advantages and drawbacks. One of the main advantages is that FIR filters are inherently
stable. This characteristic makes designing FIR filters easier than designing IIR filters. In addition, FIR filters can
provide linear phase response which may be important for some applications. Another important advantage of FIR
filters is that they are more resistant to quantization noise in their coefficients. As a result, they can be readily
implemented using 16-bit fixed point hardware such as the Multiply and Accumulate module on the C8051F12x
and C8051F36x. The main drawback of FIR filters is that they require significantly more mathematical operations to
achieve a response similar to an IIR filter. Because of the ease of design and their compatibility with fixed-point
microcontrollers, the FIR filter will be the focus of the implementation discussion for the rest of this application note.

Replacing a(1)=1 and C for the b constants, the equation for the FIR filter is as follows:

y(n) = C0x(n) + C1x(n-1) + C2x(n-2) + C3x(n-3) + …,

where y(n) is the most recent filter output and x(n) is the most recent filter input. The filter does rely on previous
inputs, as shown by the x(n-1), x(n-2), etc. terms. The Cx constants determine the filter response and can be
derived using many different algorithms, each yielding different characteristics.

y k()
b 1()x k() b+ 2()x k 1–() … b+ + n 1+()x k n–() a 2()y k 1–() …– a– n 1+()y k n–()–

a 1()
---=

y k() b 1()x k() b 2()x k 1–() … b n 1+()x k n–()+ + +
a 1()

---=

AN219

Rev. 0.1 3

This algorithm works as follows:

The first input, x(1) is multiplied by C0. The output y(1) is as follows:

y(1) = C0x(1)

The x(1) input is then saved for the next pass through the FIR algorithm.

The second input, x(2) is multiplied by C0 and the previous input x(1) is multiplied by C1. The output y(2) is as
follows:

y(2) = C0x(2) + C1x(1)

The x(1) and x(2) inputs are saved for the next input x(3), and so on.

The order of an FIR filter is equal to one less than the number of constants and is an indication of the degree of
complexity and the number of input samples that need to be stored. The higher the order, the better the
characteristics of the filter (sharper curve and flatter response in the non-attenuation region).

2.2. FIR Algorithm Implementation on the C8051F12x and C8051F36x
The C8051F12x and C8051F36x MAC engine is uniquely suited to implement FIR algorithms. Each pass through
the filter requires multiplies and accumulates, which the MAC engine was designed to implement quickly and
efficiently. Coupled with the 100 MIPS 8051 processor, the ‘F12x and ‘F36x are able to calculate the FIR filter
algorithm in real time while still leaving ample CPU resources available for other tasks.

2.2.1. Implementation Optimizations
In the FIR algorithm, the previous inputs to the filter are used in each output calculation. Instead of shuffling these
data points through an array to place the newest input in the same place (address 0, for instance), the FIR
algorithm can use a circular buffer structure to handle the flow of input samples. The circular buffer uses an array
and saved indexes to overwrite the oldest sample with the newest sample and to process the inputs in their proper
order. This structure provides a way to correctly match input samples with their corresponding filter coefficients
without excessive data movement overhead.

FIR Filters have an interesting coefficient mirroring property that allows for significant optimization of the filter
algorithm. After generating the coefficients for a particular filter, the coefficients will always be mirrored around the
center coefficient. For an example, in an n order filter, the first coefficient C0 is equal to the last coefficient Cn, the
coefficient C1 is equal to the coefficient Cn-1, etc. A benefit of this property is that half of the instructions used to
load the coefficients into the MAC can be avoided. Instead, each coefficient can be loaded into the MAC and
followed sequentially by the two samples that will be multiplied with it. This reduces the data movement operations
to the MAC by approximately 25% and offers substantially better filter performance.

Furthermore, some filters have a second property where every other coefficient has a value of zero that allows for
even more optimization. This occurs in Half-Band filters which have a frequency response that is symmetric about
1/2 of the Nyquist rate (1/4th of the Sampling Rate). These multiplications with the zero value coefficients do not
need to be performed, as the result will just be zero and the accumulated output will not change. Removing these
unnecessary multiplications from the filter loop has a substantial impact on execution time.

2.2.2. FIR Filter Example
An application uses an FIR filter to perform a task. For example, a voice application may use a low-pass FIR filter to
attenuate frequencies above 4 kHz. To demonstrate the FIR algorithm on the DSP-enabled MCUs, the
FIR_Demo.c programs measure the frequency response of the filter between 50 Hz and 5 kHz. The programs
record the input RMS value and the output RMS value of the filter at the current frequency and print the frequency,
input RMS value, and output RMS value to the UART. They then increase the generated frequency and begin
again. The programs utilize the IDAC to generate the frequency sweep and use an ADC sampling frequency of
10 kHz. The RMS value for the input and output are calculated and used in the output power calculation.

AN219

4 Rev. 0.1

This application note FIR example code takes advantage of the circular buffer and mirroring optimizations, since
these are properties of all FIR filters. The Half-Band property is only applicable to some FIR designs, so this
optimization is not included. Figure 1 illustrates the FIR firmware procedure.

Figure 1. FIR Filter Firmware Flow Diagram

Initialize the system (Oscillator, Port I/O, ADC,
DAC, UART, Timers, and MAC).

Output DAC frequency.

Sample DAC frequency with ADC.

Yes

No

Load sample into FIR circular buffer.

Load one coefficient into the MAC and multiply
by the two corresponding ADC samples.

If necessary, calculate middle coefficient for
odd number of TAPS.

Sample DAC frequency with ADC.

Calculate RMS value of the FIR filter.

Calculate RMS value of the input waveform.

Output current frequency, output RMS value,
and input RMS value through the UART.

Increment the DAC frequency by 10 Hz.

No

Start

End

Yes

Yes

No

Store the filtered sample in an array.

Number of inputs
equal to N?

Number of iterations
equal to TAPS/2?

Frequency equal
to 5 kHz?

AN219

Rev. 0.1 5

Figures 2 through 5 illustrate the frequency responses of several different filters designed using FDATool
(MATLAB) and implemented on the C8051F12x and C8051F36x family of devices. In all cases, the filter response
output from the microcontroller matches the filter response designed in FDATool.

Figure 2. 10th Order Low-Pass Filter

Figure 3. 10th Order High-Pass Filter

AN219

6 Rev. 0.1

Figure 4. 10th Order Band-Pass Filter

Figure 5. 10th Order Band-Stop Filter

AN219

Rev. 0.1 7

2.3. Running the FIR Demo
Compiling the FIR Demo example code will require either the full version of the Keil compiler (because of the code
size and the sqrt() function) or SDCC. This firmware is located in the associated application note software package
available on the Silicon Labs MCU Applications webpage.

For the hardware setup specific to the C8051F120 Target Board or C8051F360 ToolStick daughter card, refer to "5.
Hardware Setup" on page 22.

To recompile the program, open the Silicon Laboratories IDE and add the appropriate FIR_Demo.c file to the
project and build. Under the Project→Tool Chain Integration menu, select the compiler and executable paths. The
example code is intended for either the C8051F120 Target Board or the C8051F360 ToolStick daughter card,
though the programs can be modified for alternate platforms. Build the project, connect to the target device, and
download the code.

Connect to the C8051F120 using the RS-232 connector on the Target Board and a terminal program (like
HyperTerminal). Connect to the ‘F360 ToolStick daughter card board using the ToolStick Terminal program. Save
the output to a file and use the FIR_graph.xls Excel spreadsheet to graph the filter response (instructions can be
found in the spreadsheet).

2.3.1. Performance
Using three low-pass filters of three different orders, the performance of the FIR filter was measured in system
clock cycles and the CPU bandwidth used (with the ADC sampling rate of 10 kHz).

Figure 6. 5th, 10th, and 20th Order Low-Pass Filter Comparison

AN219

8 Rev. 0.1

The performance of the C8051F12x and C8051F36x families of microcontrollers are as follows with the three
different filter orders:

Even with a 20th order filter, the filter only takes 9.3% of the microcontroller bandwidth, allowing the MCU to
complete many other tasks or, if no other tasks are required, sleep and conserve power when not in use.

Code Segment 25 MIPS MAC implementation 98 MIPS MAC implementation

Clock
cycles

s MCU bandwidth Clock
cycles

s MCU bandwidth

5th order FIR filter 289 11.6 11.6% 289 2.9 2.9%

10th order FIR filter 513 20.5 20.5% 513 5.2 5.2%

20th order FIR filter 913 36.5 36.5% 913 9.3 9.3%

AN219

Rev. 0.1 9

3. Goertzel Algorithm
Many embedded systems are interested in a single or small set of frequencies in an input waveform. The Goertzel
Algorithm is a useful tool when these frequencies of interest are known.

The Goertzel Algorithm is a specialized algorithm intended to detect the presence of a single frequency. It is
implemented in the form of a two-pole IIR filter, though the derivation comes from a single-bin Discrete Fourier
Transform output*.
*Note: Lyons, Richard. Understanding Digital Signal Processing. Second Edition. 2004.

The Goertzel equations are as follows:

Q0 = (coefk × Q1[n]) - Q2[n] + x[n],

Q1 = Q0[n – 1],

Q2 = Q1[n – 1],

where x[n] is the current input, Q0 is the latest output, Q1 is the output from the previous iteration, and Q2 is the
output from two iterations ago. The coefficient coefk is dependant upon certain system parameters like the target
frequency and the total number of inputs N. The power of the input waveform at a particular frequency is as follows:

Power = magnitude2 = Q12[N] + Q22[N] - (coefk × Q1[N] × Q2[N])

Because of the Discrete Fourier Transform influence in the Goertzel equations, the algorithm does not have a valid
output until n, the current input number, is equal to N, which is the total number of inputs used by the algorithm.
This means that the output of the filter is not valid until it has processed N input samples.

3.1. Goertzel Algorithm for DTMF Applications
Dual tone multi-frequency (DTMF) uses four frequencies to represent four rows and four frequencies to represent
four columns. The grid created by overlaying the row frequencies and column frequencies is the touch-tone
telephone keypad. Each button on the keypad is represented by a waveform that is the combination of the row
frequency and column frequency. The tones chosen for the row tones and column tones are specifically non-
multiples of each other so one tone is not easily mistaken for another.

The tones for DTMF are contained within the range of normal speech. To prevent false positives of DTMF tones
during a conversation, the second harmonics of the tones are used. If the input waveform contains a stronger than
expected second harmonic of a DTMF frequency, it is most likely that the input waveform is speech instead of a
DTMF tone.

Figure 7. DTMF Keypad

D

Row 1
697 Hz

Row 2
770 Hz

Row 3
852 Hz

Row 4
941 Hz

Col 1
1209 Hz

Col 2
1336 Hz

Col 3
1477 Hz

Col 4
1633 Hz

#0*

7 8 9 C

B654

1 2 3 A

AN219

10 Rev. 0.1

DTMF tone generation is an easy problem that can be solved by stepping through constant SINE tables and adding
the tones together. For example, the “5” tone is the combination of Row 2 tone of 770 Hz and the Column 2 tone of
1336 Hz, as shown in Figure 8.

Figure 8. Figure 2.2. DTMF Tone Generation from a Row Tone and Column Tone

DTMF detection, however, requires the system to search for the presence of one row tone and one column tone
and to differentiate speech from a pure DTMF tone. Since the Goertzel Algorithm is relatively quick to calculate and
doesn’t require storage for past inputs that no longer actively participate in the calculation, it is a viable solution to
implementing DTMF decoding.

The Goertzel equations for DTMF applications then become the following:

Q0 = (coefk × Q1[n]) – Q2[n] + x[n],

Q1 = Q0[n – 1],

Q2 = Q1[n – 1],

x[n] = ADC Sample

k = 0.5 × ((N × DTMF_Target_Frequency)/Sampling_Rate)

N = number of samples per sample set

coefk = 2cos((2 × k) / N)

3.2. Goertzel Algorithm for DTMF Implementation on the C8051F12x and C8051F36x
The MAC engine and 100 MIPS core CPU speed enable the C801F12x and C8051F36x to implement the Goertzel
Algorithm for DTMF tone detection easily and quickly. The equations for the Goertzel Algorithm are a series of
multiplies and additions suited to the MAC.

3.2.1. Implementation Optimizations
Using the Goertzel Algorithm for DTMF requires 16 filters: 8 for the base DTMF frequencies and 8 for the DTMF
frequency second harmonics. However, these two sets of filters do not need to be calculated concurrently. If they
are separated into two groups, the DTMF tone can be detected sooner and the second harmonic can be checked
after the initial tone detection. Additionally, the memory requirements are greatly lessened by separating the two
filters, as the storage can be reused between the two sets.

3.2.2. Goertzel DTMF Example
The DTMF_Demo.c programs generate the DTMF tones using the on-chip DAC and a constant SINE table. The
example code detects the tones using the Goertzel Algorithm in the ADC ISR (Interrupt Service Routine). The DAC
updates the output waveforms at 100 kHz and the ADC samples the input at 8 kHz. The program displays a
keypad using the UART and requests a tone to generate. When a tone is requested, that tone is generated on the
DAC for a set amount of time, and the ADC samples the waveform and determines if a DTMF tone is present. If a
tone is detected, an indicator is printed to the UART. In the application example code, the 8 base frequencies and 8
second harmonics are separated into two sets of filters to optimize memory usage. Figure 9 illustrates the Goertzel
DTMF firmware procedure.

+ =

770 Hz 1336 Hz “5”

AN219

Rev. 0.1 11

Figure 9. Goertzel DTMF Firmware Flow Diagram

Initialize the system (Oscillator, Port I/O, ADC,
DAC, UART, Timers, and MAC).

Output UART menu.

Start

Output number selected.

Yes

No
Input received?

Start Timer that
updates DAC output.

Start Timer to start
ADC conversions.

Enter Timer Interrupt Service Routine when
interrupt occurs.

Find the next value for the row frequency in
constant SINE table.

Find the next value for the column frequency in
constant SINE table.

Add the row value and column value together.

Update the DAC output.

Stop Timer and stop DAC output.

Yes

No

Enter ADC Interrupt Service Routine when a
conversion is complete.

Calculate gain and adjust the input samples
accordingly.

Calculate the 8 Goertzel filters, one for each
DTMF frequency or DTMF frequency second

harmonic.

Yes

Calculate output power for each filter.

Output detected tone.

Yes

No

No

Tone generated
for 100 ms?

Number of inputs
equal to N?

DTMF tone
detected?

AN219

12 Rev. 0.1

Because the example code generates the DTMF tone and detects it on the same device, there is a synchronization
between the systems that would not normally exist in an application. Separate generation and detection code is
also provided with this application note for systems where the two actions occur asynchronously on separate
platforms.

3.3. Running the Goertzel DTMF Demo
The Goertzel DTMF Demo requires either the full version of the Keil compiler (because the code size is larger than
4 kB) or SDCC. This firmware is located in the associated application note software package available on the
Silicon Labs Applications webpage.

For the hardware setup specific to the C8051F120 Target Board or C8051F360 ToolStick daughter card, refer to "5.
Hardware Setup" on page 22.

To recompile the program, open the Silicon Laboratories IDE and add the DTMF_Demo.c file to the project and
build. Under the Project→Tool Chain Integration menu, select the appropriate compiler and executable paths. The
project is intended for either the C8051F120 Target Board or the C8051F360 ToolStick daughter card, though it can
be modified for alternate platforms. Build the project, connect to the target, and download the code.

Connect to the C8051F120 using the RS-232 connector on the Target Board and a terminal program (like
HyperTerminal). Connect to the ‘F360 ToolStick daughter card board using the ToolStick Terminal program.
Navigate the UART menu to generate DTMF tones. The UART will output when a tone has been generated and if
a tone was detected before reprinting the menu.

3.4. Performance
The MAC engine and 100 MIPS core CPU speed allow the C8051F12x and C8051F36x family of microcontrollers
to greatly outperform a 25 MIPS CPU running the same algorithm. This allows the ‘F12x and ‘F36x to calculate the
algorithms for eight filters concurrently and in real-time as the inputs are gathered. Furthermore, the ‘F12x and
‘F36x can calculate the power for each frequency in real-time.

With the normal implementation running at 25 MIPS, the power calculations must occur in the background in
between the calculations for each ADC input, and because so much of each sampling period is taken by the
calculations themselves, the power calculation results may be rather delayed. However, the ‘F12x and ‘F36x
implementation using the MAC and 100 MIPS CPU bandwidth are more than eight times faster and the filters and
power calculations can be completed entirely in the ADC ISR (Interrupt Service Routine) before the next ADC
sample. Because of this, the power calculations and Goertzel filters don’t take nearly as much time away from
other tasks. In a 25 MIPS device, the DTMF application will take most of the bandwidth of the device, but the DSP-
enabled microcontrollers can easily complete other tasks.

Furthermore, the normal implementation takes more code space (5355 bytes of code versus 5057 bytes of code)
and more RAM (165 bytes versus 126 bytes) to implement than the MAC version of the algorithm.

Code Segment 25 MIPS non-MAC
implementation

98 MIPS non-MAC
implementation

98 MIPS MAC
implementation

Clock
cycles

s Clock
cycles

s Clock
cycles

s

8 Goertzel filters in
ADC ISR

2095 83.8 2095 21.4 1018 10.4

Power calculations 13,113 524.5 13,113 133.8 1743 17.8

Total time for 200
input samples

432,000 17,285 432,000 4409 205,000 2095

AN219

Rev. 0.1 13

4. Fast Fourier Transform
The Fourier Transform takes a continuous time-domain signal as its input and calculates the frequency content of
the signal. In real systems with ADC inputs, however, the time-domain signal is discrete and not continuous, so the
Discrete Fourier Transform (DFT) must be used. The Fast Fourier Transform (FFT) generates the same output as
the DFT but much more efficiently.

The FFT takes the input data array and breaks it down into halves recursively until the data is in pairs. Then, the
FFT calculates the 2-point FFT for the data and uses the outputs to calculate the 4-point FFT. The outputs of the 4-
point FFT are then used to calculate the 8-point FFT, and so forth, until the N-point FFT is complete.

The DFT requires N2 complex calculations to generate the output, where N is the number of points in the DFT. The
FFT, however, only requires N/2 x log2N complex calculations. As the number of input points to the FFT (N)
increases, the FFT efficiency is vastly superior compared to the DFT.

The FFT allows for frequency analysis in a system and is a staple of any DSP catalog. Where the FFT is
traditionally implemented on DSPs, DSP-enabled MCUs have FFT capability in an embedded system with the
flexibility of a general-purpose programmable microcontroller.

4.1. FFT Algorithm
The FFT works by taking an N-point input data array and dividing it into halves recursively until the 2-point data
pairs are left. These 2-point pairs are then combined to create the 4-point results, and the 4-point pairs are
combined to create the 8-point results, and so forth. As a result, N must be a power of 2 (2, 4, 8, 16, 32, 64, etc.).

The 2-point combination or stage is the basic building block of the FFT. This algorithm is repeated for each
proceeding stage. The 2-point “butterfly” is calculated as show in figure.

Figure 10. 2-Point FFT Butterfly Structure

The W factor shown in the diagram is the “twiddle.” The twiddle is a sine/cosine factor calculated based on the
number of points in the current stage. The equation for the twiddle is as follows:

Table 1. DFT and FFT Complex Calculations for Varying N

N (number of input samples) 8 256 1024 8192

DFT (complex calculations) 64 65536 1,048,576 67,108,864

FFT (complex calculations) 12 1024 5120 53,248

-

A

B

A' = A + W2 x B

B' = A - W2 x B1

W2
0

0

W2
1

W
m
N

e j2nπm– N⁄ 2πm N⁄()cos 2πm N⁄()sin–= =

AN219

14 Rev. 0.1

where N is 2 for a 2-point stage and m is 0 to N-1 (so 0 and 1 in this case). Note that A and B are both complex
numbers, so they both contain real and imaginary components.

Two 2-point butterflies are combined to create the 4-point FFT. The A and B outputs of the first 2-point butterfly
become A1 and A2, and the A and B outputs of the second 2-point butterfly become B1 and B2. The 4-point FFT is
then as shown in Figure 11.

Figure 11. 4-Point FFT Structure

In the case of the 4-point FFT, the W factors have m from 0 to 3 and N is 4.

B2

B1

A1

A2

A1' = A1 + W4 x B1

A2' = A2 + W4 x B2

- B1' = A1 - W4 x B1

B2' = A2 - W4 x B2-

0

1

2

3

W4
0

W4
1

W4
2

W4
3

AN219

Rev. 0.1 15

Similarly, the 8-point FFT is a combination of two 4-point FFTs:

Figure 12. 8-point FFT Structure

For each stage of the FFT, the number of complex data points remains the same (32 data points in the 2-point
stage, 32 data points in the 4-point stage), so the FFT is a computationally intense algorithm, especially as N
becomes large. Furthermore, any errors in the early stages will compound in the later stages, so the more accurate
the calculations, the better the FFT algorithm implementation.

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

X(0) = R0 + I0

X(1) = R1 + I1

X(2) = R2 + I2

X(3) = R3 + I3

X(4) = R4 + I4

X(5) = R5 + I5

X(6) = R6 + I6

X(7) = R7 + I7

W2
0

W2
1

W2
0

W2
1

W2
1

W2
0

W2
1

W2
0

W4
0

W4
1

W4
2

W4
3

W4
0

W4
1

W4
2

W4
3

W8
0

W8
1

W8
2

W8
3

W8
4

W8
5

W8
6

W8
7

AN219

16 Rev. 0.1

4.1.1. Windowing
If the sampling frequency is not a perfect multiple of the input waveform, the input data set will have a discontinuity
between the first data point and the last data point. This discontinuity can cause false energy in the FFT. To remove
this, a Window is used that conforms the input waveform to a particular shape. This Window alters the amplitude of
the waveform, but does not change the frequency components.

Figure 13. Windowing the FFT Data to Make Endpoints Continuous

While the Window helps with false energy, one side-effect is the energy tends to spread more between bins. The
width of the main lobe and the amplitude of the side lobes differs between different Window functions*. Several
examples of Windows are Hamming, Hanning, Blackman, and Triangle.
*Note: Lyons, Richard. Understanding Digital Signal Processing. Second Edition. 2004.
4.1.2. Bit Reversal
The input data in the form of an array is not accessed linearly in the FFT algorithm. The first two values combined
in the 2-point butterfly for a 16-point FFT are the data at addresses 0 and 8 (dividing the data in half, 0 and 8 are
the first data in each half). The next two addresses that are combined are 4 with 12, then 2 with 10 and 6 with 14.

With a small FFT, calculating the new indexes each pass through is trivial. However, the more complex the FFT, the
more time it takes to calculate the indexes. These index calculations can be bypassed if the input array is reordered
in a “bit-reversed” fashion. For example, see Figure 14 which shows a 16-point FFT with 16 input data points.

Figure 14. Data Address Bit Reversal

+ =

Triangle Window

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

 Data Addresses
(array)

0 0000
8 0001
4 0010

12 0011
2 0100

10 0101
6 0110

14 0111
1 1000
9 1001
5 1010

13 1011
3 1100

11 1101
7 1110

15 1111

 Bit Reversed
Data Addresses

(array)

Re-order

0 0000
1 1000
2 0100
3 1100
4 0010
5 1010
6 0110
7 1110
8 0001
9 1001

10 0101
11 1101
12 0011
13 1011
14 0111
15 1111

Bit ReverseBit Reverse

original
index

Bit Reversed index
in binary form

AN219

Rev. 0.1 17

The data pairs that combine in the first several 2-point FFTs are colored in blue (0 and 8), green (4 and 12), red (2
and 10), and purple (6 and 14). The decimal value of the addresses is shown along with the binary form to make
clear the original value of the address after the bit reversal. In the bit reversal, bit 3 is swapped with bit 0 and bit 2
is swapped with bit 1, so that an address of ‘1’, or 0001, is translated to an address of ‘8’, or 1000.

Indexing is now reduced to simple linear progression through the array. Notice that all the even addresses appear
at the beginning of the array and all the odd addresses appear at the end.

4.1.3. Interpreting the FFT Output
The FFT output is a series of “bins” that represent the amount of energy in a frequency band. Each bin represents
a cycles-per-interval value. For example, with the following 64-point FFT output:

Figure 15. Bin 0 of an FFT output

The 0 bin represents 0 cycles/interval or a dc value. Similarly, the 1 bin represents 1 cycle/interval.

0 1 2 3 4 5 6 7 8 9 11 31292725232119171513

cycles / interval

t0 tN

AN219

18 Rev. 0.1

Figure 16. Bin 1 of an FFT output

The interval is the total time represented by the samples, or N x tsampling, where tsampling is the sampling period.
Each bin, then, represents a frequency that’s a fraction of the sampling frequency. The bins can be converted to
frequency by the following equation:

fbin = (bin/N) x fsampling

4.2. FFT Algorithm Implementation on the C8051F12x and C8051F36x
The C8051F12x and C8051F36x, with their MAC engine and 100 MIPS peak CPU, can process the Windowing
and FFT calculations much more quickly than many 8051 platforms. The Windowing routines involve multiplying
the input data points by a set of constants, which can be made faster using the MAC. The FFT algorithm is a set of
additions and multiplications that is also suited to the MAC.

4.2.1. Implementation Optimizations
In an unoptimized FFT, the twiddle would be calculated for every complex calculation. However, there are many
cases in the FFT where the sine or cosine functions are 0, 1, or –1. In these instances, a large speed savings is
reached by optimizing the equations beforehand to remove the twiddle calculation and the zero terms. For
example, the sine terms are always zero in a 2-point FFT and can be removed from the 2-point calculations.

0 1 2 3 4 5 6 7 8 9 11 31292725232119171513

cycles / interval

t0 tN

AN219

Rev. 0.1 19

4.2.2. FFT Example
The example code generates a waveform using the IDAC and samples 256 data points of that waveform using the
ADC at 10 kHz for a 256-point FFT. After the inputs are sampled, the data is run through the Windowing routine
using the Blackman Window, the Bit Reversal routine, and the FFT algorithm. The final outputs (Real and
Imaginary) are displayed using the UART along with the first half of the bin numbers (up until 1/2 fsampling).
Figure 17 displays the FFT firmware procedure.

Figure 17. FFT Firmware Flow Diagram

Initialize the system (Oscillator, Port I/O, ADC,
DAC, UART, Timers, and MAC).

Start

Start Timer to start
ADC conversions.

Start Timer that
updates DAC output.

ADC ISR

FFT Input Waveform Generator

FFT

Windowing

Enter Timer Interrupt Service Routine when
interrupt occurs.

Find the next value for the first frequency in
constant SINE table.

Find the next value for the second frequency in
constant SINE table.

Add the first and second frequencies together.

Update the DAC output.

Enter ADC Interrupt Service Routine when a
conversion is complete.

Store the latest input in the Real array.

If Remove_DC = 1, center the input waveform
around 0.

If Remove_DC = 1, check if the latest sample
is the maximum or minimum.

No

Yes

Multiply the inputs by the Windowing
constants.

Swap the inputs using the Bit Reversal table.

Calculate the 2-point FFT butterflies using
optimized calculations (no twiddles).

Calculate the next FFTs. Optimize out the
twiddle calculations, if possible.

No

Yes

End

Bit Reversal

Print the FFT output to the UART.

Number of inputs
equal to N?

Last N/2 stage?

AN219

20 Rev. 0.1

The sampled waveform in FFT_Demo.c is a combination of 770 Hz and 1336 Hz. The graphed output from Excel is
as shown in Figure 18.

Figure 18. FFT output from 256-point FFT with 770 Hz and 1336 Hz Input

The FFT output indicates that 770 Hz and 1336 Hz tones were properly detected in the input waveform.

4.3. Running the FFT Demo
The FFT Demo requires either the full version of the Keil compiler (because the code size is larger than 4 kB) or
SDCC. This firmware is located in the associated application note software package available on the Silicon Labs
Applications webpage.

For the hardware setup specific to the C8051F120 Target Board or C8051F360 ToolStick daughter card, refer to "5.
Hardware Setup" on page 22.

To recompile the program, open the Silicon Laboratories IDE and add the FFT_Demo.c file to the project and build.
Under the Project→Tool Chain Integration menu, select the appropriate compiler and executable paths. The project
is intended for either the C8051F120 Target Board or the C8051F360 ToolStick daughter card, though it can be
modified for other platforms. Build the project, connect to the target, and download the code.

Connect to the C8051F120 using the RS-232 connector on the Target Board and a terminal program (like
HyperTerminal). Connect to the ‘F360 ToolStick daughter card board using the ToolStick Terminal program. Save
the output to a file and use the FFT_graph.xls Excel spreadsheet to graph the frequency content of the input
waveform (instructions can be found in the spreadsheet).

AN219

Rev. 0.1 21

4.4. Performance
On the C8051F120 and C8051F360, the MAC implementation of the FFT is almost 8 times faster than the non-
MAC implementation at 25 MHz and almost 2 times faster than the non-MAC implementation at 98 MHz.

In addition, the non-MAC implementation requires 5259 bytes of code space and 91 bytes of RAM. The MAC
implementation only requires 4616 bytes of code space and 67 bytes of RAM. Not only is the MAC implementation
quite a bit faster, but it also requires fewer resources.

Code Segment 25 MIPS non-MAC
implementation

98 MIPS non-MAC
implementation

98 MIPS MAC
implementation

Clock
cycles

ms Clock
cycles

ms Clock
cycles

ms

Windowing 107,916 4.3 107,916 1.1 75,583 0.8

Bit Reversal 29,800 1.2 29,800 0.3 29,800 0.3

FFT 1,467,071 58.7 1,467,071 15.0 819,009 8.3

Total 1,604,842 64.2 1,604,842 16.4 924,433 9.4

AN219

22 Rev. 0.1

5. Hardware Setup
The hardware setup descriptions apply to all of the different examples provided in this application note.

5.1. C8051F120 Target Board Instructions
Connect the DAC0 and AIN0.0 pins together using the J11 shorting block (DAC0 is pin 3 and AIN0.0 is pin 7 on
J11). Additionally, verify the 4.7 µF C19 and 0.1 µF C22 VREF capacitors are populated and J22 connects the
output on the VREF pin to the VREF0 and VREFD input pins.

Figure 19. C8051F120 Target Board Hardware Configuration

J22

DAC0

AIN0.0

VREF0

VREFD

VREF

C8051F120

C19
4.7 µF

C22
0.1 µF

J11

AN219

Rev. 0.1 23

5.2. C8051F360 ToolStick Daughter Card Instructions
Connect the P0.1 and P1.1 pins together using the testpoints on the board. Verify R7 (1 kΩ resistor), C5 (0.1 µF
capacitor), and C1 (10 µF capacitor) are populated.

Important Note: When using the C8051F36x ToolStick for the FIR filter example, make sure the C5 0.1 µF
capacitor on the IDAC pin (P0.1) is replaced with a 100 pF capacitor so the IDAC sine wave is not attenuated.

Figure 20. C8051F360 ToolStick Daughter Card Hardware Configuration

P1.1/AIN1

P0.1/IDAC0

VREF

C8051F362

C1
10 µF

C5
0.1 µF (FFT/Goertzel)

or 100 pF (FIR)

R7
1 kO

AN219

24 Rev. 0.1

CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Email: MCUinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

http://www.silabs.com
http://www.silabs.com

	1. Introduction
	1.1. Key Points

	2. Digital FIR Filters
	2.1. Digital Filter Algorithms
	2.1.1. IIR Filter Algorithm
	2.1.2. FIR Filter Algorithm

	2.2. FIR Algorithm Implementation on the C8051F12x and C8051F36x
	2.2.1. Implementation Optimizations
	2.2.2. FIR Filter Example
	Figure 1. FIR Filter Firmware Flow Diagram
	Figure 2. 10th Order Low-Pass Filter
	Figure 3. 10th Order High-Pass Filter
	Figure 4. 10th Order Band-Pass Filter
	Figure 5. 10th Order Band-Stop Filter
	2.3.1. Performance
	Figure 6. 5th, 10th, and 20th Order Low-Pass Filter Comparison

	3. Goertzel Algorithm
	3.1. Goertzel Algorithm for DTMF Applications
	Figure 7. DTMF Keypad
	Figure 8. Figure 2.2. DTMF Tone Generation from a Row Tone and Column Tone

	3.2. Goertzel Algorithm for DTMF Implementation on the C8051F12x and C8051F36x
	3.2.1. Implementation Optimizations
	3.2.2. Goertzel DTMF Example
	Figure 9. Goertzel DTMF Firmware Flow Diagram

	3.3. Running the Goertzel DTMF Demo
	3.4. Performance

	4. Fast Fourier Transform
	Table 1. DFT and FFT Complex Calculations for Varying N
	4.1. FFT Algorithm
	Figure 10. 2-Point FFT Butterfly Structure
	Figure 11. 4-Point FFT Structure
	Figure 12. 8-point FFT Structure
	Figure 13. Windowing the FFT Data to Make Endpoints Continuous
	4.1.2. Bit Reversal
	Figure 14. Data Address Bit Reversal
	4.1.3. Interpreting the FFT Output
	Figure 15. Bin 0 of an FFT output
	Figure 16. Bin 1 of an FFT output

	4.2. FFT Algorithm Implementation on the C8051F12x and C8051F36x
	4.2.1. Implementation Optimizations
	Figure 17. FFT Firmware Flow Diagram
	Figure 18. FFT output from 256-point FFT with 770 Hz and 1336 Hz Input

	4.3. Running the FFT Demo

	5. Hardware Setup
	5.1. C8051F120 Target Board Instructions
	Figure 19. C8051F120 Target Board Hardware Configuration
	Figure 20. C8051F360 ToolStick Daughter Card Hardware Configuration

	Contact Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

